Variational Monte Carlo approach to partial differential equations with neural networks

نویسندگان

چکیده

Abstract The accurate numerical solution of partial differential equations (PDEs) is a central task in analysis allowing to model wide range natural phenomena by employing specialized solvers depending on the scenario application. Here, we develop variational approach for solving PDEs governing evolution high dimensional probability distributions. Our naturally works unbounded continuous domain and encodes full density function through its parameters, which are adapted dynamically during optimally reflect dynamics density. In contrast previous works, this dynamical adaptation parameters carried out using an explicit prescription avoiding iterative gradient descent. For considered benchmark cases observe excellent agreement with solutions as well analytical tasks that challenging traditional computational approaches.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multilevel Monte Carlo method with applications to stochastic partial differential equations

In this work, the approximation of Hilbert-space-valued random variables is combined with the approximation of the expectation by a multilevel Monte Carlo method. The number of samples on the different levels of the multilevel approximation are chosen such that the errors are balanced. The overall work then decreases in the optimal case to O(h−2) if h is the error of the approximation. The mult...

متن کامل

Generalizing Hamiltonian Monte Carlo with Neural Networks

We present a general-purpose method to train Markov chain Monte Carlo kernels, parameterized by deep neural networks, that converge and mix quickly to their target distribution. Our method generalizes Hamiltonian Monte Carlo and is trained to maximize expected squared jumped distance, a proxy for mixing speed. We demonstrate large empirical gains on a collection of simple but challenging distri...

متن کامل

A Multimodes Monte Carlo Finite Element Method for Elliptic Partial Differential Equations with Random Coefficients

This paper develops and analyzes an efficient numerical method for solving elliptic partial differential equations, where the diffusion coefficients are random perturbations of deterministic diffusion coefficients. The method is based upon a multimodes representation of the solution as a power series of the perturbation parameter, and the Monte Carlo technique for sampling the probability space...

متن کامل

Variational Sequential Monte Carlo

Many recent advances in large scale probabilistic inference rely on variational methods. The success of variational approaches depends on (i) formulating a flexible parametric family of distributions, and (ii) optimizing the parameters to find the member of this family that most closely approximates the exact posterior. In this paper we present a new approximating family of distributions, the v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Machine learning: science and technology

سال: 2022

ISSN: ['2632-2153']

DOI: https://doi.org/10.1088/2632-2153/aca317